Patent or not, that is the question

November 16, 2023

Is it really necessary to have a patent and billions of kroner before the media takes an interest in sensationally good results?

The other day in the newspaper Politiken, you could read an article (1) about Ozempic and Wegovy /Semaglutide, including an interview with Professor Jens Søndergaard, who stated that a recent study from the Cleveland Clinic had shown a 20% reduction in serious cardiovascular events after 4 years of treatment, which is such a great medical breakthrough that he had never seen anything like it, and compared it to the discovery of penicillin. -This is really great.

Semaglutide costs DKK 2,400 per month and has side effects in the form of upset stomach and nausea.

The result is quite impressive, even if it is a relative risk reduction rather than an absolute risk reduction. But there are now other scientific studies from this year that have shown far more impressive results.

What if there were a treatment that after 4 years showed a reduction in cardiovascular mortality of over 50% at a price of DKK 369. per month and completely without side effects? … What??
Yes, that is precisely the conclusion of the 10-year follow-up of the 2013 study (2) of Selenium and Coenzyme Q10 in combination.

The study (3) was previously described in the Vitality Council’s newsletter of 23 April 2023. However, that is not what I want to focus on here. It is rather the selection of news in the media that I want to discuss.

What really surprises me is that a risk reduction of 20% for cardiac events draws huge headlines and benevolent admiration whereas an equally valid study, which even shows a reduction in cardiovascular mortality of over 50%, is not even mentioned in the same newspapers -and you can’t deny the quality of this study.

Is it because it’s too good to be true that the media don’t want to bother writing about the scientific article, or does it absolutely have to be an expensive prescription drug with side effects before it’s interesting?

Actually, Professor Urban Alehagen also doubted his own results, which is why he analyzed them again and again from different sides but came to the same result.

And he is not the only one, as numerous previous studies have shown consistent increased survival with selenium and/or Q10.

Senior physician Svend Aage Mortensen at Rigshospitalet published several fine studies (4) of Q10 against heart failure but without their winning any resonance in the very orthodox medical profession.

Substances such as Coenzyme Q10 cannot be patented. Is that where the dog is buried? After all, a patent opens up possibilities for absolutely exorbitant earnings and the resulting marketing, press coverage, etc., just as there are funds for further research, publications, press, etc. -A self-reinforcing wheel that just goes faster and faster.

Substances that cannot be patented easily drown in the media stream because there is no great interest when there is no big money involved. But that is precisely why one should be even more interested in the serious research that takes place with these unpatented products. Professor Alehagen’s studies have clearly shown that an expensive, patented product is not necessary to halve the risk of dying of cardiovascular disease.

It is simply incredible that the selenium and Coenzyme Q10 study has not found a place on the front pages of the media.

Take care of yourself and others.

Claus Hancke MD
Specialist in general medicine

Refs.

  1. Politiken 13/11-2023
  2. U Alehagen et al. Int J Cardiol 2013;167:1860-1866.
  3. U Alehagen et al. Antioxidants 2023, 12, 759
  4. https://iubmb.onlinelibrary.wiley.com/doi/abs/10.1002/biof.5520180210

Q10 and selenium protect the heart

April 23, 2023

Supplementation of Q10 and Selenium over a 4-year period
could halve cardiovascular mortality.

A  short  time ago a very important scientific article was published.

The article was an offshoot of the sensational article by researcher Dr. Urban Alehagen and colleagues from 2015, who showed massive cardiovascular protection with supplementation of Q10 in combination with selenium.
Alehagen and colleagues then carried out a follow-up of this study, but not only that. They have also sought to dig into the actual cause of this positive effect, which was a halving of cardiovascular mortality after 4 years of supplementation.

The logic is straight to the point. The vast majority of cardiovascular diseases are caused by atherosclerosis, and this is caused by a combination of inflammation, i.e. a local response to tissue damage and oxidation (here rancidity). Without these two factors, atherosclerosis does not occur.

Briefly, the mechanism is that oxidation turns LDL3 cholesterol rancid, which is thereby “eaten” by a type of white blood cells called monocytes via a structure on the cell surface called a “scavenger receptor”. This means that LDL cholesterol is directed around the usual LDL receptor, which could otherwise easily block intake. But the scavenger receptor cannot stop its intake of LDL cholesterol if it is oxidized, because LDL in this form acts as a free radical. And that is exactly what the scavenger receptor is designed to let into the monocyte. However, since the intake cannot stop, even though the monocyte is probably so crowded, it swells up and is seen under the microscope as a large white blob. And when there are many of these monocytes together, it looks like foam. Therefore, these “overfed” monocytes are called “foam cells”.
Oxidation is thus required for a monocyte to become a foam cell.
When the monocyte circulates in the bloodstream, it will react if it finds an area, e.g. the blood vessel wall, where there is inflammation, e.g. due to high blood pressure. The monocyte will search for the inflamed area, penetrate the vessel wall (into the subendothelial layer), where it will perish and leave behind a fatty layer of oxidized LDL3 cholesterol. This will increase inflammation and attract even more foam cells, which in turn perish, leaving behind more of the rancid fat, which is gradually consolidated by fibrin and finally stabilized by calcium, which is the last step in atherosclerosis.

The entire above process will not take place unless there is both increased inflammation and oxidation.
And precisely selenium and Q10 inhibit both inflammation and oxidation. Therefore, it is perhaps not so strange that they prevent cardiovascular disease and reduce the risk of dying from it.

Q10
The body’s cells produce energy in order to function, and this energy requires Q10 in the cells’ internal power plant, the mitochondria.
Unfortunately, there is a natural decline in the body’s production of Q10 as we age, and it is therefore natural to supplement this.
Q10 is a substance that the body produces in almost the same way as it produces cholesterol. Q10 and cholesterol are actually sister molecules that look very similar. So when you take a cholesterol-lowering medication, you also lower the production of Q10. You should therefore be aware that you often lack Q10 if you take cholesterol-lowering medication.

Selenium
Selenium is a substance that we absolutely must not lack, and numerous studies have confirmed over the years that selenium deficiency can lead to, among other things, heart failure, cancer, metabolic disorders, arthritis, childlessness, atherosclerosis, increased inflammation and a number of immunological failures, which were particularly relevant in the corona era.
There are thousands of articles that cement heavy research into selenium, such as a study of selenium deficiency related to cardiovascular disorders and inflammatory conditions. Since cardiovascular disorders are also initiated by inflammation, it is natural to investigate this together.
Previous studies have also shown that low selenium in the blood was the cause of increased inflammation, increased risk of cardiovascular disease and early death.

The current study mentioned above is also primarily aimed at finding the biochemical mechanism behind this effect.

As mentioned above, it is based on Alehagen and colleagues’ article from 2015, and it is evidence with a very high degree of reliability, as it was a double-blind, randomized, prospective study. The participants were healthy elderly with an average age of 76 years. 165 received 200µg Selenium + 200mg Q10 daily, and 161 received placebo. The treatment lasted 4 years, after which various parameters were measured.
They were particularly interested in measuring the change in Sirtuin1, an enzymatic protein (deacetylase), which is important for the survival of cells when they are exposed to oxidative stress, because Sirtuin1 increases the effect of certain antioxidants.
But not only that. Sirtuin1 also inhibits the so-called NFκB signal, which is a substance that otherwise produces a strong inflammatory response.
So if you can increase Sirtuin1, you will thereby be able to inhibit inflammation and oxidation, – in other words, the two factors, which are mainly responsible for, among other things, cardiovascular diseases.
After a 4-year intervention period, the SIRT1 concentration was found to be significantly increased (from 252 to 469 ng/ml) in the active group and decreased (from 269 to 190 ng/ml) in the placebo group.
In a 10-year follow-up period, 25 in the active group and 52 in the placebo group died of cardiovascular disease, and the 77 who died had significantly lower SIRT1 concentration than the rest.
A small wrinkle in the study is that the so-called microRNA is also affected in a direction that inhibits the aging of the cardiovascular system. Micro-RNA contributes to the regulation of the gene activity. This has very far-reaching consequences for epigenetics, that is different modifications of DNA, which can turn genes on or off, and will of course be explored intensively in the future.

In this scientific trial, Alehagen and colleagues have shown that just 4 years of Selenium and Q10 supplementation inhibits oxidation and inflammation, and halves cardiovascular mortality over a 10-year period.

Now that selenium and Q10 are effective in inhibiting oxidation and inflammation, it is not surprising that they can halve the risk of dying from cardiovascular disease.
It is more strange that this is not standard advice from the medical profession when the evidence is so solid.

Take care of yourself and others.

Claus Hancke MD
Specialist in general medicine

Q10 increases survival in heart failure

May 24, 2022

New review article highlights ubiquinone/Q10 as a first choice for heart failure.

Heart failure is a relatively common disorder, and often occurs as a result of a blood clot in the heart, which has left a scar in the heart muscle. This scar tissue is connective tissue that does not have the normal muscle function of the myocardium, and if a large part of the muscles of the left ventricle in particular is out of order, it is clear that the heart can no longer pump as efficiently.

The most common symptom is dyspnoea, which means that you breathe faster with physical exertion, because the oxygen concentration in the blood can not be maintained when the heart has reduced its ability to pump blood to oxygenate the lungs.

This condition is clinically classified in the so-called “NYHA” groups 1-4, which were once defined by the New York Heart Association, hence the name.

Roughly speaking, in class 1 you have no problems with normal activity, in class 2 you can not run, only walk, in class 3 only sit, and in class 4 you are largely bedridden.

All this is precisely limited by dyspnoea.

The heart failure is diagnosed and graded by ultrasound-Doppler examination and especially the “stroke volume” / EF (Ejection Fraction) of the left ventricle is measured, which is usually around 60% and satisfactory at 50%.

(The volume of the heart is a bit like with the lungs. You can not completely empty it of blood, just as you can not completely empty the lungs of air. Therefore, it is satisfying if the heart can pump out half of its contents at each heart rate.)

The heart muscle can be weakened by many things other than a blood clot, and by any of the transient conditions, such as eg. inflammation of the heart muscle (myocarditis), the pump function can also be restored afterwards.

But after a blood clot, it is difficult because the scar tissue that is formed after the blood clot will never actively pump again.
However, there is hope because the part of the heart muscle that is not damaged may well become stronger.

This is the focus of rehabilitation after a blood clot, but there is also something else that can be done. -You can optimize the energy production in the cells of the myocardium.

Treatment of heart failure
The usual treatment for heart failure was once limited to diuretics and digoxin, but has been under constant development and is today complemented with ACE inhibitors, Procoralan, SGLT-2 inhibitors and even beta-blockers, which were once contraindicated in heart failure. .

This is how the treatments develop continuously, and the idea with the treatment is primarily to relieve the heart and prevent arrhythmias or prevent that you get a blood clot again.

There are also patients with heart failure who benefit from a pacemaker, and if the situation it is completely bad, then a heart pump or a transplant.

Stop for a moment
Before we go off at a tangent maybe we should just try to get a little overview. What exactly do we want to achieve?

We want to achieve that a person with heart failure lives as well as possible for as long as possible.

So should we not try the least invasive treatment so that we avoid many of the heavy side effects following all the above treatments?

All the common treatments are intended to relieve the heart. But there are also options to make the heart stronger so that it pumps better with the remaining muscle tissue. As mentioned, exercise is one of the options, but you can also increase energy production in every single heart muscle cell.

Ubiquinon/Q10
Last week, a review article was published in Journal of Cardiovascular Development and Disease , which reviews 22 scientific articles (20 RCTs) on Q10 used against heart failure.

In the 16 articles, they found significant improvement in pump function (EF) or survival or both. In all cases, there was an inverse correlation between the blood concentration of Q10 and the worsening of the symptoms in patients with heart failure, just as the concentration of Q10 was an indicator of longevity.

In other words, those who had the lowest content of Q10 in the blood had a rapid worsening of the symptoms, just as they lived for a shorter time.
In line with this, it was similarly found that supplementation with Q10 improved the pumping function of the heart and increased the life expectancy of these patients.

The article also focuses on the inappropriate effect of statins, which not only lower cholesterol production but also the production of coenzyme Q10, as these form a common synthetic route from AcetylcoA over mevalonate to farnesyl pyrophosphate. This synthesis requires i.a. the enzyme HMG-CoA reductase and this enzyme is inhibited by statins.

Often, statins are actually prescribed to patients with heart failure, although this should be contraindicated according to the above.
It is noted very laconic that Q10 has at least as good a documentary weight as the treatment that is today considered the gold standard for treating heart failure. Exercise is extremely well documented, whereas digoxin and SGLT-2 inhibitors are poorly documented. Here we must say that Q10 is significantly better documented.

Given the solid evidence and the absence of interactions and side effects with ubiquinone/Q10, it is an obvious first-line treatment for heart failure, and should be implemented throughout the public health system.

 

Claus Hancke
Specialist in general medicine

Ref.

2022 Maj 16, Krzysztof J. Filipiak et al: Heart Failure, -Do We Need New Drugs or Have Them Already? A Case of Coenzyme Q10, J. Cardiovasc. Dev. Dis. 2022, 9, 161

Promising treatment for macular degeneration

December 22, 2007

New orthomolecular treatment named as the “first choice” for AMD, otherwise known macula degeneration.

In the November 28, 2006 edition of the Vitality Council Newsletter we reported on a study which indicated that eating eggs, which contain the antioxidants lutein and zeaxanthine, has positive effects on AMD.

Almost two years ago we described a maybe even more important study undertaken at the University of Rome. It showed that normal recommended doses of simple dietary supplements prevents the most common form of blindness, the age related degeneration of the retina otherwise known as “retinal calcification.” This is what medical professionals call AMD. About one in eight people over the age of 85 have AMD severe enough to cause vision loss.

This study has recently been published again, giving us grounds to discuss AMD in more detail.

One does not become completely blind due to AMD. Peripheral vision is still maintained, enabling one to orient themselves in a room or go for a walk. Even so, AMD does cause handicap. Central vision is lost, which means that the ability to see shapely is lost. Therefore reading is impossible, seeing the TV, cooking, using tools, working on the computer, and recognising friends and family is difficult. A grey dot in the middle of the field of vision replaces everyone’s faces.

Central sight is governed by a yellow spot on the eye’s retina where the highest concentration of colour registering cones is found. This is why one of the first things lost in AMD is colour vision.

The changes in AMD can be directly observed on the retina when one looks into the eye. In the early stages it is characterized by small or larger deposits of yellowish waste products in the eye. Every one of these deposits represents a hole in the field of vision. This is unnoticeable so long as these hoses are small. Almost everyone over the age of 50 has at least one of these deposits, but if there are many deposits of greater size, the risk for blindness is great.

Severe cases of AMD can be characterised by an accumulation of larger deposits alone. This is called dry AMD. Another, and more dangerous, form is the so called wet AMD. In this form “leaky” blood vessels grow in under the retina, possibly as the body’s effort to bring more energy to the retina. The result is that liquid seeps out of these vessels causing total destruction of central vision. This can occur very quickly, but with quick intervention of an ophthalmologist (eye doctor) the new blood vessels can be blocked with laser treatment and vision can be saved in many cases.

The deposits and new blood vessels lead to the creation of dents in the retina. In severe cases scars form and pull on the retina. This leads to vision where straight lines seem bent. Often, but not always, one can discover the beginnings of AMD by holding a piece of graph paper at a normal reading distance and looking at it one eye at a time. If the lines are curved, an eye doctor should be consulted immediately.

New methodology
The republished study mentioned earlier is a double blinded study that showed with statistical certainty an improvement in the sight of patients with early stage AMD after they received a combination of n-3 fatty acids, Q10, and L-carnitine. The improvement in sight, which was slight, was first present after 3-6 months, after which sight remained stable until the end of the study one year later. This effect lasted even longer in a following study. It was also observed that the number of deposits decreased! This is important and very promising. Improvement occurred primarily for those with mild cases, but also for some with more severe AMD. Early diagnosis is paramount.

The theory behind these finds is that AMD is a disease of the mitochondria, which means that it is a disease which affects energy production in the cells. This is supported by the fact that cells from AMD affected retinas have more damaged mitochondria than normal cells when viewed under and electron microscope. The logic behind the treatment used in the study is therefore the following:

The vitamin-like substance carnitine is necessary for mitochondrial fat uptake and metabolism.

The fat is added as n-3 fatty acids, like those found in fish oil. N-3 fats compose no less than 30% of the structure of the retina!

Q10 can be understood as the motor’s sparkplug. It optimises metabolism so that energy production can start. The body’s own Q10 production falls with age and because of this, and carnitine deficiency, there becomes less energy available. It is hardly coincidental that patients with wet AMD have less Q10 in their blood than normal.

This important study powerfully indicates that quick action can stop newly diagnosed AMD. The authors strongly believe that their treatment should be the treatment of choice for newly diagnosed AMD.

By: Vitality Council

References:
1. Feher et al. Metabolic therapy for early treatment of age-related macula degeneration. Orv Hetil 2007;148:2259-68.
2. Feher et al. Improvement of visual functions and fundus alterations in early age-related macular degeneration treated with a combination of acetyl-L-carnitine and coenzyme Q10. Ophtalmologica 2005;219:154-66
3. Feher et al. Mitotropic compounds for the treatment of age-related macular degeneration. The metabolic approach and a pilot study. Ophtalmologica 2003;217:351-7
4. Blasi et al. Does coenzyme Q10 play a role in opposing oxidative stress in patients with age-related macular degeneration? Ophtalmologica 2001;215:51-54.
5. Feher J et al. Mitochondrial alterations of retinal pigment epithelium in age-related macular degeneration. Neurobiol Aging 2005;June 22: 15979212.

Again, uneasiness regarding the pill

July 31, 2006

The pill (contraception in pill form) drains the body of the antioxidants, vitamin E and Q10. This could mean that a supplement would make it much safer to take the pill.

More than 100 million women worldwide use the pill as contraception. The pill is believed to be remarkably safe, and it is easy to forget that it can have serious side effects. According to a Dutch report from 2003, users of the pill have a 3-6 times higher risk of developing blood clots in the veins, which is a dangerous condition. In addition, they have a 2-5 times higher risk of developing blood clots in the heart or of suffering from stroke. These numbers are the same for the modern forms of the pill, which have few other few side effects.

If the risk of disease is low, (because of being young and otherwise healthy) than a low percentage increased in risk does not so important. But why is there any increase at all? Light has been thrown on this question by researchers of the Albert Einstein College of Medicine in New York. They have proven that users of the pill have lower vitamin E and Q10 levels in their blood than women who do not take the pill. Vitamin E and Q10 are well known antioxidants.

This is nothing new. Already 15 years ago, researchers believed that vitamin E could reduce the risks associated with the pill. It was also known that the pill drains the body of antioxidants, which can be directly linked to an increased risk of blood clot formation. When one lacks vitamin E, the fats in the blood become oxidized, thereby stimulating the platelets to stick together causing the formation of blood clots. Logically, it was suggested that vitamin E should be combined with use of the pill.

The pill uses up the body’s vitamin E and Q10 reserves. This has been proven again, this time in a study where 15 users of the pill in their forties were compared with women in the same age group who did not take the pill. The differences found were statistically valid, and although this was a small study there were no doubts regarding the results. These results were known before the study was completed; the problem was that nobody had been paying any attention to them.

Unsolved problems
Why does the pill strain the bloods vitamin E and Q10 contents? The pill raises the body’s oestrogen levels. This is why the ovaries go into hibernation so that ovulation is inhibited. The body registers a hormone level high enough that the ovaries can take a break. Even normal (physiologic) levels of oestrogen stimulate the formation of free radicals and therefore cause an increased use of antioxidants. This has been shown in an American study of the cells which compose the inner walls of the blood vessels (endothelium cells). They also showed that free radicals resulting from the presence of oestrogen caused the cells to grow, causing the blood vessels to thicken. It is believed that this increases the risk of blood clots. It also indicates that antioxidants could prevent such side effects.

For practical purposes, women with an increased risk for side effects are advised not to take the pill. This includes women over the age of 35, women with high blood pressure, and so on. All women with an increased risk of blood clots should refrain from using the pill. This causes some amount of contemplation. Who knows if they are in the high risk group? Is their risk so low that a five fold increase in risk is acceptable?

Aside from these problems it is important to know that if you use the pill, your defence against the formation of free radicals is weakened. Even though this is well known, no one has, until recently, thought to reduce this risk with the use of antioxidants.

An important question follows: What is the long term prognosis for women who took the pill for many years when they were young? During the many years they took the pill, they had reduced levels of vitamin E and Q10 in their blood. In the short term, this increased the oxidation of the blood’s fats which increased the risk of blood clots. But does it cause problems in the long term like smoking and high blood pressure? As yet, we can only guess.

By: Vitality Council

References:
1. Palan PR Magneson AT, Castillo M, Dunne J, Mikhail MS. Effects of menstrual cycle and oral contraceptive use on serum levels of lipid soluble antioxidants. Am J Obstet Gynecol. 2006 May;194(5):e35-8. Epub 2006 Apr 21
2. Felty Q. Estrogen-induced DNA synthesis in vascular endothelial cells is mediated by ROS signaling. BMC Cardiovasc Disord 2006 Apr 11;6:16
3. Ciavatti M, Renaud S. Oxidative status and oral contraceptive. Its relevance to platelet abnormalities and cardiovascular risk. Free Radic Biol Med. 1991;10(5):325-38
4. Saha A, Roy K, De K, Sengupta C. Effects of oral contraceptive norethindron on blood lipid and lipid peroxidation parameters. Acta Pol Pharm. 2000 Nov-Dec;57(6):441-7.
5. Tanis BC, Rosendaal FR. Venous and arterial thrombosis during oral contraceptive use: Risks and risk factors. Semin Vasc Med. 2003 Feb;3(1):69-84
6. Crook D, Godsland I. Safety evaluation of modern oral contraceptives. Effect on lipoprotein and carbohydrate metabolism. Contraception. 1998 Mar;57(3):189-201

Coenzyme Q10, Research references

January 1999

1. Battino M, Fato R, Lenaz G: Coenzyme Q10 can control the efficiency of oxidative phosphorylation.; Int J Tissue React 12, no. 3, pp. 137-144, 1990.
2. Chen Rou-Shayn et al. Coenzyme Q10 treatment in mitochondrial encephalomyopathies. Eur Neurol 37:212-18, 1997.
3. Folkers K et al. Biochemical rationale and the cardiac response of patients with muscle disease to therapy with coenzyme Q10. Proc Natl Acad Sci U S A 82;13:4513-16, 1985.
4. Folkers K, Wolaniuk J, Sinonsen R, et al, in K. Folkers, Y Yamamura, Eds. Biochemical and Clinical Aspects of Coenzyme Q10, Vol. 5. Amsterdam, Elsevier Science Pub. 353-8, 1985
5. Folkers K, Vadhanavikit S, Mortensen SA. Biochemical rationale and myocardial tissue data on the effective therapy of cardiomyopathy with coenzyme Q10. Proc Natl Acad Sci U S A 1985;82:901-4
6. Folkers K, Langsjoen P, Nara Y, et al. Biochemical deficiencies of coenzyme Q10 in HIV-infection and exploratory treatment. Biochem Biophys Res Commun 153:888-96, 1988.
7. Folkers K, Hanioka T, Xia LJ, et al. Coenzyme Q10 increases T4/T8 ratios of lymphocytes in ordinary subjects and relevance to patients having the AIDS-related complex. Biochem Biophys Res Commun 176; (2):786-91, 1991.
8. Folkers K, Morita M, McRee Jr. J. The activities of coenzyme Q10 and vitamin B6 for immune response. Biochem Biophys Res Commun 193: 88-92, 1993.
9. Fryburg DA et al. The immunostimulatory effects and safety of beta-carotene in patients with AIDS. VIIIth Int Conf on AIDS, Amsterdam, 1992.
10. Sato K. Pharmacoklinetics of coenzyme Q10 in recovery of acute sensorineural hearing loss due to hypoxia. Acta Otolaryngol Suppl (Stockh.) 458: 95-102, 1988.
11. Simonsen R, Folkers K, Komorowski J, et al, in K Folkers, GP Littarru, T Yamagami, Eds. Biochemical and Clinical Aspects of Coenzyme Q10, Volume 6. Amsterdam, Elsevier Science Publ., 363-73, 1991.
12. Sobreira C et al. Mitochondrial encephalomyopathy with coenzyme Q10 deficiency. Neurology 48:1238-43, 1997.
13. Yamabe H, Fukuzaki H, in K Folkers, GP Littarru, Y Yamagami, Eds. Biochemical and Clinical Aspects of Coenzyme Q10, Vol. 6. Amsterdam, Elsevier Sci Pub., 1991: 541-5, 1991.
14. Zeppilli P, Merlino B, DeLuca A, et al, in K Folkers, GP Littarru, Y Yamagami, Eds. Biochemical and Clinical Aspects of Coenzyme Q10, Volume 6. Amsterdam, Elsevier Science Pub. 541-5, 1991.
15. Judy, W.V., Folkers, K.A., & Stogsdill, W.W. (1993). Myocardial preservation by therapy with Coenzyme Q10 during heart surgery. Clinical Investigator; 71(8 Suppl): S155-61.
16. Morisco, C., Trimarco, B., & Condorelli, M. (1993). Effect of Coenzyme Q10 therapy in patients with congestive heart failure: a long-term multicenter randomized study. The Clinical Investigator, 71(8 Suppl), S134-S136.

 

Kilder
Joseph E. Pizzorno Jr., Michael T. Murrey & Melvyn R. Werbach, and others