Patent or not, that is the question

November 16, 2023

Is it really necessary to have a patent and billions of kroner before the media takes an interest in sensationally good results?

The other day in the newspaper Politiken, you could read an article (1) about Ozempic and Wegovy /Semaglutide, including an interview with Professor Jens Søndergaard, who stated that a recent study from the Cleveland Clinic had shown a 20% reduction in serious cardiovascular events after 4 years of treatment, which is such a great medical breakthrough that he had never seen anything like it, and compared it to the discovery of penicillin. -This is really great.

Semaglutide costs DKK 2,400 per month and has side effects in the form of upset stomach and nausea.

The result is quite impressive, even if it is a relative risk reduction rather than an absolute risk reduction. But there are now other scientific studies from this year that have shown far more impressive results.

What if there were a treatment that after 4 years showed a reduction in cardiovascular mortality of over 50% at a price of DKK 369. per month and completely without side effects? … What??
Yes, that is precisely the conclusion of the 10-year follow-up of the 2013 study (2) of Selenium and Coenzyme Q10 in combination.

The study (3) was previously described in the Vitality Council’s newsletter of 23 April 2023. However, that is not what I want to focus on here. It is rather the selection of news in the media that I want to discuss.

What really surprises me is that a risk reduction of 20% for cardiac events draws huge headlines and benevolent admiration whereas an equally valid study, which even shows a reduction in cardiovascular mortality of over 50%, is not even mentioned in the same newspapers -and you can’t deny the quality of this study.

Is it because it’s too good to be true that the media don’t want to bother writing about the scientific article, or does it absolutely have to be an expensive prescription drug with side effects before it’s interesting?

Actually, Professor Urban Alehagen also doubted his own results, which is why he analyzed them again and again from different sides but came to the same result.

And he is not the only one, as numerous previous studies have shown consistent increased survival with selenium and/or Q10.

Senior physician Svend Aage Mortensen at Rigshospitalet published several fine studies (4) of Q10 against heart failure but without their winning any resonance in the very orthodox medical profession.

Substances such as Coenzyme Q10 cannot be patented. Is that where the dog is buried? After all, a patent opens up possibilities for absolutely exorbitant earnings and the resulting marketing, press coverage, etc., just as there are funds for further research, publications, press, etc. -A self-reinforcing wheel that just goes faster and faster.

Substances that cannot be patented easily drown in the media stream because there is no great interest when there is no big money involved. But that is precisely why one should be even more interested in the serious research that takes place with these unpatented products. Professor Alehagen’s studies have clearly shown that an expensive, patented product is not necessary to halve the risk of dying of cardiovascular disease.

It is simply incredible that the selenium and Coenzyme Q10 study has not found a place on the front pages of the media.

Take care of yourself and others.

Claus Hancke MD
Specialist in general medicine


  1. Politiken 13/11-2023
  2. U Alehagen et al. Int J Cardiol 2013;167:1860-1866.
  3. U Alehagen et al. Antioxidants 2023, 12, 759

Q10 and selenium protect the heart

April 23, 2023

Supplementation of Q10 and Selenium over a 4-year period
could halve cardiovascular mortality.

A  short  time ago a very important scientific article was published.

The article was an offshoot of the sensational article by researcher Dr. Urban Alehagen and colleagues from 2015, who showed massive cardiovascular protection with supplementation of Q10 in combination with selenium.
Alehagen and colleagues then carried out a follow-up of this study, but not only that. They have also sought to dig into the actual cause of this positive effect, which was a halving of cardiovascular mortality after 4 years of supplementation.

The logic is straight to the point. The vast majority of cardiovascular diseases are caused by atherosclerosis, and this is caused by a combination of inflammation, i.e. a local response to tissue damage and oxidation (here rancidity). Without these two factors, atherosclerosis does not occur.

Briefly, the mechanism is that oxidation turns LDL3 cholesterol rancid, which is thereby “eaten” by a type of white blood cells called monocytes via a structure on the cell surface called a “scavenger receptor”. This means that LDL cholesterol is directed around the usual LDL receptor, which could otherwise easily block intake. But the scavenger receptor cannot stop its intake of LDL cholesterol if it is oxidized, because LDL in this form acts as a free radical. And that is exactly what the scavenger receptor is designed to let into the monocyte. However, since the intake cannot stop, even though the monocyte is probably so crowded, it swells up and is seen under the microscope as a large white blob. And when there are many of these monocytes together, it looks like foam. Therefore, these “overfed” monocytes are called “foam cells”.
Oxidation is thus required for a monocyte to become a foam cell.
When the monocyte circulates in the bloodstream, it will react if it finds an area, e.g. the blood vessel wall, where there is inflammation, e.g. due to high blood pressure. The monocyte will search for the inflamed area, penetrate the vessel wall (into the subendothelial layer), where it will perish and leave behind a fatty layer of oxidized LDL3 cholesterol. This will increase inflammation and attract even more foam cells, which in turn perish, leaving behind more of the rancid fat, which is gradually consolidated by fibrin and finally stabilized by calcium, which is the last step in atherosclerosis.

The entire above process will not take place unless there is both increased inflammation and oxidation.
And precisely selenium and Q10 inhibit both inflammation and oxidation. Therefore, it is perhaps not so strange that they prevent cardiovascular disease and reduce the risk of dying from it.

The body’s cells produce energy in order to function, and this energy requires Q10 in the cells’ internal power plant, the mitochondria.
Unfortunately, there is a natural decline in the body’s production of Q10 as we age, and it is therefore natural to supplement this.
Q10 is a substance that the body produces in almost the same way as it produces cholesterol. Q10 and cholesterol are actually sister molecules that look very similar. So when you take a cholesterol-lowering medication, you also lower the production of Q10. You should therefore be aware that you often lack Q10 if you take cholesterol-lowering medication.

Selenium is a substance that we absolutely must not lack, and numerous studies have confirmed over the years that selenium deficiency can lead to, among other things, heart failure, cancer, metabolic disorders, arthritis, childlessness, atherosclerosis, increased inflammation and a number of immunological failures, which were particularly relevant in the corona era.
There are thousands of articles that cement heavy research into selenium, such as a study of selenium deficiency related to cardiovascular disorders and inflammatory conditions. Since cardiovascular disorders are also initiated by inflammation, it is natural to investigate this together.
Previous studies have also shown that low selenium in the blood was the cause of increased inflammation, increased risk of cardiovascular disease and early death.

The current study mentioned above is also primarily aimed at finding the biochemical mechanism behind this effect.

As mentioned above, it is based on Alehagen and colleagues’ article from 2015, and it is evidence with a very high degree of reliability, as it was a double-blind, randomized, prospective study. The participants were healthy elderly with an average age of 76 years. 165 received 200µg Selenium + 200mg Q10 daily, and 161 received placebo. The treatment lasted 4 years, after which various parameters were measured.
They were particularly interested in measuring the change in Sirtuin1, an enzymatic protein (deacetylase), which is important for the survival of cells when they are exposed to oxidative stress, because Sirtuin1 increases the effect of certain antioxidants.
But not only that. Sirtuin1 also inhibits the so-called NFκB signal, which is a substance that otherwise produces a strong inflammatory response.
So if you can increase Sirtuin1, you will thereby be able to inhibit inflammation and oxidation, – in other words, the two factors, which are mainly responsible for, among other things, cardiovascular diseases.
After a 4-year intervention period, the SIRT1 concentration was found to be significantly increased (from 252 to 469 ng/ml) in the active group and decreased (from 269 to 190 ng/ml) in the placebo group.
In a 10-year follow-up period, 25 in the active group and 52 in the placebo group died of cardiovascular disease, and the 77 who died had significantly lower SIRT1 concentration than the rest.
A small wrinkle in the study is that the so-called microRNA is also affected in a direction that inhibits the aging of the cardiovascular system. Micro-RNA contributes to the regulation of the gene activity. This has very far-reaching consequences for epigenetics, that is different modifications of DNA, which can turn genes on or off, and will of course be explored intensively in the future.

In this scientific trial, Alehagen and colleagues have shown that just 4 years of Selenium and Q10 supplementation inhibits oxidation and inflammation, and halves cardiovascular mortality over a 10-year period.

Now that selenium and Q10 are effective in inhibiting oxidation and inflammation, it is not surprising that they can halve the risk of dying from cardiovascular disease.
It is more strange that this is not standard advice from the medical profession when the evidence is so solid.

Take care of yourself and others.

Claus Hancke MD
Specialist in general medicine