Vitamin C against atherosclerosis (hardened arteries)

March 23, 2006

So far a British research study is showing that C vitamin fights inflammation. Therefore it is very possible that it also fights hardened arteries and blodclots.

If one compares peoples’ eating habits with their risk of blood clots in the heart, one gets the impression that vitamin C prevents blood clots. So far it has been hard to prove through randomised trails that vitamin C supplements protect high risk patients from blood clots. This is how it has been up to now, even though one can claim that many of the studies have been lacking.

Whatever the objections, it is widely believed that the debate over.

It is currently said that vitamin C does not protect against atherosclerosis, but is it true? A recent summary could indicate that the debate is long from over. It shows that vitamin C counteracts inflammation, which is to say infection-like reactions. There is also widespread agreement that atherosclerosis is due to inflammation. Does vitamin C therefore protect against atherosclerosis?

In order to understand the problem it is necessary to take a little detour in this discussion:
Until 20-30 years ago, atherosclerosis was believed to be a process which was roughly due to the depositing of cholesterol in the walls of the blood vessels followed by the build up of calcium. Today it is understood the vessel walls are composed of living cells, and that both the build up of cholesterol and the thickening of the vessel walls are related to inflammation. The same is true for the bursting of the surface against the blood stream, with the emptying of cholesterol and cell products, which causes the platelets (etc.) to clump together, causing a blood clot.

Inflammation appears, curiously enough, to be a part of the sales success of the cholesterol lowering medications, the so called statins. It cannot be denied that they save lives, but is it because they lower the blood’s cholesterol level?

Vitamin C lowers CRP
Here there is doubt. Statins do not only lower cholesterol, but also reduce inflammation. This can be directly measured by a simple blood test (CRP) which hundreds of thousands of Danes get taken when their doctors what to know if they have infection in their bodies. The two effects of statins, the lowering of CRP and the reduction of cholesterol, are not necessarily related, but the risk of blood clots in the heart is more related to CRP than to cholesterol levels. In a study where statins were shown to reduce the risk of heart disease by ca. 30%, their favourable effect was statistically shown to be related to CRP levels, regardless of the cholesterol level! It looks like CRP is more important than cholesterol!

With this we can return to vitamin C. Does vitamin C reduce CRP, just like statins?

In a couple of small randomised studies it was examined whether or not this is the case. In both studies the daily dose of vitamin C was about 500 mg. In the first (with smokers as the participants) CRP was markedly reduced, in the second nothing happened. The contradictory results have now been explained by a study with 3258 reasonably cardio-vascular healthy men between the ages of 60-79.

The primary result was that the more vitamin C that the men had in their blood (serum), the lower their CRP. The quarter of the participants who had the highest level of vitamin C in their blood (with or without consideration of supplements), had the lowest CRP values. The difference was overwhelmingly statistically certain. Concurrently, other measurements indicated that the likelihood for “irritability” of the vessel walls (endothelial dysfunction) was also the lowest in the highest vitamin C group. There is common agreement that this “irritability” mirrors a tendency for atherosclerosis.

Vitamin C is therefore believed to lower CRP, which is an important indicator for inflammation, and therefore the risk of dying of a blood clot. The debate rages on!

By: Vitality Council

References:
1. Ridker et al. C-reactive protein levels and outcomes after statin therapy. N Engl J Med 2005;352:20-8
2. Ridker PM, C-reactive protein levels and outcomes after statin therapy. N Engl J Med. 2005 Jan 6;352(1):20-8
3. Libby P. Inflammation and cardiovascular disease mechanisms. Am J Clin Nutr 2006;83(Suppl):456S-60S
4. Goya S et al. Associations of vitamin C status, fruit and vegetable intakes, and markers of inflammation and hemostasis. Am J Clin Nutr 2006;83:567-74
5. Ishwarlal J et al. Is vitamin C an anti-inflammatory agent? Am J Clin Nutr 2006;83:525-6
6. Mora S Justification for the Use of Statins in Primary Prevention: an Intervention Trial Evaluating Rosuvastatin (JUPITER)–can C-reactive protein be used to target statin therapy in primary prevention?Am J Cardiol. 2006 Jan 16;97(2A):33A-41A. Epub 2005 Dec 1.
7. Bruunsgaard H, Long-term combined supplementations with alpha-tocopherol and vitamin C have no detectable anti-inflammatory effects in healthy men. J Nutr. 2003 Apr;133(4):1170-3.
8. Block G Plasma C-reactive protein concentrations in active and passive smokers: influence of antioxidant supplementation. J Am Coll Nutr. 2004 Apr;23(2):141-7.

content.nejm.org
www.ajcn.org
www.nutrition.org

Children with ADHD lack magneisum

March 17, 2006

A majority of restless ADHD children were lacking in magnesium. All children improved when given magnesium and B6-vitamin supplements.

In almost all kindergarten classes there are one or two so-called ADHD-children giving the teacher a hard time with their continuous restlessness, running about, violent behaviour and inattentiveness. (ADHD stands for Attention Deficit, Hyperactivity Disorder).

Two studies – the only ones conducted – have now shown that a combination of magnesium and vitamin B6 helps.

Why should magnesium help? In a French study 52 children, all diagnosed with ADHD, were examined. The children were typically six years old. If the serum level of magnesium was measured in a normal blood test, normal values were seen. But since almost all magnesium in the body is found inside the cells, this says nothing. It is inside the cells that we must look.

On average, the children only had 4/5 of the amount of magnesium in the cells (in this case, the red blood cells) present in normal adults. They were deficient in magnesium!

Therefore they were given a daily supplement of 6 mg. of magnesium and 0.8 mg. Vitamin B6 per kilo body mass for one to six months. After this, no less than all the children got better. For example, at the beginning of the experiment 26 of the children were deemed physically aggressive. After four months, only six. At the same time their ability to concentrate and their attention span improved (evaluated in an approved manner). Statistically, these results were quite credible.

A weakness in the French study was that it was a so-called open study. There was no untreated control group and the treatment was not blind. This leaves room for coincidence and over-interpretation. On the other hand, the study showed exactly the same as a similar study from 1997. Also, the improvements occurred at the same time as the measurable magnesium deficiency disappeared. When this had happened, treatment was stopped.

Magnesium in the Diet
If it works, it may not be that surprising. The same course of treatment seems to have helped women suffering from irritability and imbalance due to PMS (PreMenstrual Syndrome) in several studies. On top of this comes the generally sedative effect on nerves (magnesium can be used as a local anaesthetic). Magnesium has a relaxing effect on muscles. Does magnesium also have a calming effect on the central nervous system?

Another question is why ADHD-children apparently are deficient in magnesium. The French suggest that genetic factors play a role, but in a majority of the parents, it was not just one, but both of them who were deficient in the mineral. This suggests that nutrition is more important.

A British evaluation indicates that foodstuffs’ content of magnesium has decreased in the past 60 years. It is estimated that today there is 24 and 16 percent less magnesium in vegetables and fruit, respectively, than in 1940. On top of this is an increase in the consumption of sugar. Those who dauntlessly claim that 10 percent of the calories in the diet can be contributed by sugar, are also saying that you can easily omit 10 percent of the diet’s magnesium. Furthermore, less physical work means a decreased need for food generally, thereby decreasing the amount of magnesium we consume. A typical magnesium consumption rate today (3-400 mg. a day) is probably half of what it was 100 years ago.

Something else to consider also is that there is a row of more or less confirmed observations of connections between behavioural disorders in children and teenagers (and criminals) and an unhealthy diet. Is this purely coincidence?
It will take several months to rectify a magnesium deficiency, but it might be worth it to try.

By: Vitality Council

References:
1. Mousain-Bosc et al. Magnesium VitB6 intake reduces central nervous system hyperexcitability in children. J Am Coll Nutrition 2004;23:545S-548S
2. Starobrat-Hermelin et al. The effects of magnesium physiological supplementation on hyperactivity in children with attention deficit hyperactive disorder (ADHD). Magnes Res 1997;10:143-8

www.jacn.org

Calcium supplements with vitamin D against colon cancer?

February 18, 2006

A large study attempted to show whether or not calcium and vitamin D prevent colon cancer. It was a strange study, using low doses over a short period.

There are probably those who believe that the latest study on calcium and vitamin D shows that neither is good for anything. But we should hesitate before going to that extreme. One can also believe that the study was not suited to draw this conclusion. Or, as it is stated in a leading editorial in “The New England Journal of Medicine:” the conclusion should be interpreted in light of the study was complicated and in light of the probability that the doses of calcium and vitamin D were too low.

The debate regards the insidious and widespread cancers of the colon and rectum. Half of a group of 36,282 American women between the ages of 50 and 79 took part in a seven year study where they received daily supplements of 1,000 mg calcium and 400 units vitamin D to see if reduced their risk of these diseases. The supplements given are the same as two normal calcium and vitamin D vitamin tablets, which many take to strengthen their bones. After the seven years the researchers assessed the number of women who developed colon and rectum cancer. The result was disheartening: Whether the women received supplements or placebo had not effect on the risk.

There was a single positive find buried in the data. The women who had the least vitamin D in their blood during the study had with statistical certainty the greatest probability of developing colon cancer. This could indicate that vitamin D has a positive effect. There was also a tendency, but only a tendency, that these women had the greatest benefit from the supplements.

Quite a lot of things contribute to that this conclusion be taken with a grain of salt. This is partially due to that the study was very complex.

Possibly the most important objection is that it “only” lasted seven years. It is believed that colon cancer takes 10-20 years to develop before it is diagnosed. It the supplements prevent a new cancer from forming it is clear that for this reason no effects will be found as early as after seven years. This has been considered: Participants in the study will be monitored further for the next five years.

Strong objections
If the goal was to show a difference within the seven year period, those responsible should have at least ended the study by examining the intestines of all of the participants in order to find early cancer stages, or polyps. This did not occur. There was neither the money nor the resources necessary to do over 35,000 intestinal examinations. It was only possible to establish that the number of independently undertaken intestinal exams and the number of discovered cancers in the two groups were about the same. But maybe nothing more can be expected.

One confusing detail is that the study participants were allowed to continue taking the supplements that they had taken before the study along with the supplements that they received as a part of the study. On average they received 1,100 mg calcium and 350 units vitamin D, both close to the recommended dosages, before the study began. Many of them therefore must have received very large doses of calcium, over 2,000 mg, per day. Is it reasonable to guess that this is the reason for the slightly increased frequency of self-reported kidney stones? 2.4% of those who received supplements and 2.1% of those who received placebo, got kidney stones during the seven years.

Also, the average age was relatively low (62), which reduced the risk of cancer, and therefore weakened the study. It was further weakened by the fact that more than one out of four participants did not finish the study. Whether this dropout rate is because calcium pills can cause constipation is not considered in the article.

Just as important, the dose of vitamin D, as referred to in the editorial, may have been too low. Recently it has been estimated that about 1,000 units daily is necessary for most people in order to achieve any supposed cancer preventing effect. This amount of vitamin D (or more accurately 25-(OH)-vitamin D) is necessary to achieve a serum concentration of over 30 nano-grams per litre (75 nanomols per millilitre). Nevertheless, only a minority of the study participants received this amount.

What can be concluded from this? The editorial gives some suggestions for new studies. Much indicates that vitamin D, and maybe calcium, prevents cancer. But we still lack sufficient knowledge.

By: Vitality Council

References:
1. Wactawski-Wende J et al. Calcium plus vitamin D supplementation and the risk of colorectal cancer. N Engl J Med 2006;354:684-96.
2. Forman M C et al. Calcium plus vitamin D3 supplementation and colorectal cancer in women. N Engl J Med 2006;354:752-4.
3. Garland C F et al. The role of vitamin D in cancer prevention. Am J Publ Health 2006;96:9-18.

Greater need for vitamin B-12

February 1, 2006

Middle-aged and elderly women’s need for Vitamin B-12 is with great certainty 2,5 times higher than previously believed. A daily vitamin tablet is often not enough.

How is the need for a vitamin determined? Earlier it was determined based on how much is necessary to avoid acute deficiencies. This is sometimes still the case. For example, the current recommendations for vitamin C are still based on a World War II study on 20 English military objectors. Half of them came down with scurvy and two were close to death. But this study found that scurvy can be avoided with 12 mg vitamin C per day.

This kind of research is brutal by today’s standards. But it is also antiquated because it does not take other deficiency symptoms into account, including those which arise after longer periods and are not coupled with bruising of the skin, brittle bones, paralyses, and other acute symptoms. Today, instead of merely recording with a study participant becomes deathly ill, we follow the processes that the vitamins in question are involved in and determine whether or not they function as they should. This methodology was used by the American, Mark Levine when he proved that our need for vitamin C is closed to 200 mg per day than the normally recommended 60 mg. If one makes due with 60 mg it is believed that the vitamin C dependant reactions become slow and that there is an significantly increased risk of cardiovascular disease and cancer.

Of current interest, there is news regarding the need for vitamin B12. The current recommendation in England has been set to 1 microgram per day. A Danish study has recently shown that the need for vitamin B12 is six times as much (6 micrograms). This was determined in a study of 98 Danish women with an average age of 60. Such a large need meanwhile created a problem; the women typically only received 4.6 micrograms via their diet.

Even though they supplemented their intake with a normal vitamin pill (1 microgram B12), half of them received too little vitamin B12. Stronger pills are needed.

Increasing recommendations
For the last 50 years B12 status has been determined by measuring the blood’s B12 content. Findings in recent years have shown that a “normal” B12 value does not necessarily mean that there is enough. Even with a normal B12 value, build op of metabolism products which B12 normally removes can occur (these include homocysteine and MMA, otherwise known as methylmalonic acid). Therefore the amount of these substances present is measured when trying to determine whether or not there is a deficiency.

Recently a third indirect measure for B12 deficiency has been put into focus: holotranscobalamin, a B12 containing protein, seems to be able to replace the above-mentioned method and may even be more sensitive to B12 deficiency. It is very important to get enough of this protein. It is responsible for delivering B12 to the cells, almost like the paperboy who delivers the paper to your door. Without the paperboy, there is no paper.

The Danish study showed that the values for Holotranscobalamin, MMA, and homocysteine no longer indicated deficiency only when a B12 intake of over 6 micrograms per day was achieved. If B12 intake is less than 6 micrograms, there is sand in the B12-works.

The researchers conclude with conviction:
”…our results, together with those of others, strongly suggest that the RDA of 2.4 micrograms/day should be increased.”
This can also been said about many other vitamins. Experience from recent years indicates that the recommendations for not only vitamin B12, but also vitamins C and E and the minerals selenium, chromium, and magnesium, should also be increased, and in some cases greatly increased. Increased intake of many of the other B vitamins as well as iodine should also be considered.

This is especially true about vitamin D, on which we at the Danish Vitality Counsel have focused. The recommended daily dosage of vitamin D should be doubled for those of us who live in northern climes.

The official recommendations have as a whole not followed developments in research, even though there are strong arguments for new recommendations. According to some, there is need for more evidence. But this is contrary to the supposition that new recommendations could prevent serious chronic disease.

The dilemma is strengthened by the fact that it is difficult or impossible to get higher doses of vitamins and minerals though our modern diet. Some suggest that it might be possible with a Stone Age diet, but we surely will not have another Stone Age.

By: Vitality Council

References:
1. Mustafa Vakar Bor et al. A daily intake of approximately 6 {micro}g vitamin B-12 appears to saturate all the vitamin B-12-related variables in Danish postmenopausal women. Am J Clin Nutr. 2006 Jan;83(1):52-8.
2. Zouë Lloyd-Wright et al. Holotranscobalamin as an Indicator of Dietary Vitamin B12 Deficiency. Clinical Chemistry 49: 2076-2078, 2003;10.1373/clinchem.2003.020743.

www.ajcn.org
www.clinchem.org
www.iom.dk

Vitamins against aging

January 9, 2006

The need for many vitamins increases with age. A deficiency can be compared to radiation exposure, which causes mutations, decreased energy production, cancer, and age-related changes in the body, according to one of the World’s leading nutrition scientists.

When Bruce Ames was 70, President Clinton surprised him with U.S.A.’s highest scientific recognition, The National Medal of Science, for his research in nutrition, cancer, and aging.

Today he is 77, but still an almost incomprehensibility active researcher and professor at the famous Berkeley University in California. He is also the man behind the world renown Ames test, a lightning fast method to find out whether a specific chemical can cause mutations, and thereby cancer.

This introduction shows that Ames it a researcher to be listen to, and therefore we have decided to discuss one of Ames’s latest and most important scientific articles.

The article was published in a periodical for the European organization of molecular biologists (EMBO reports). It describes how it is possible to reduce the tendency for cancer and aging by taking more than the recommended dose of diverse vitamins and other important substances.

How does it do this? In his study Ames found that deficiencies of vitamins C, E, B6, and B12 as well as of folic acid and zinc can have exactly the same effect on cells as radioactivity. This means that such deficiency causes mutations, for example as a result of breakage of the chromosomes.

Folic acid deficiency causes such breakage because it leads to the introduction of a wrong substance (uracil) in uncountable places along the DNA molecules. These mutations affect the cells the same way as a virus affects a computer. In the worst cases, the system beaks down.

But deficiency does not only lead to mutations. Another result is weakening of the energy producing mitochondria, otherwise known as the cells’ power plants. In order for the mitochondria to function, they must have access to certain enzymes, which can be regarded as the power plant’s machinery. The enzymes work together so that the product from one “machine” is processed further by the next in a chain of reactions which result in the conversation of oxygen and hydrogen into water, and the production of energy. But where do the enzymes come from? Without the necessary building blocks they do not exist at all!

Ames has among other things proven that deficiencies of zinc or the B vitamins biotin and pantothenic acid weaken the fourth reaction in this chain of reactions. They are the building blocks of the “machines” which carry out this step in the process. Not only is the production of energy reduced by such deficiency, but oxygen is also insufficiently converted to water. As a result the mitochondria empty free radicals into the surrounding cell where they can cause mutations, cancer, and weakness.

More Energy
Why does Ames believe that it is necessary to take more vitamins than recommended? This is as a result of the third and last point in his thought process. It regards the consequence of the uncountable mutations which by the aforementioned methods unavoidably arise during ones life. These mutations cause the cells to produce less effective enzymes that bind less effectively to the vitamins which they need to aid their function. Ames maintains that this poor binding can be overcome simply by increasing the amount of vitamins. This makes the enzymes work again.

A particular problem in this regard is the weakening of the mitochondria which occurs with age. Without energy, nothing functions within the cell and the degeneration of the mitochondria is central to what we call aging. But Ames emphasizes that it is possible to make old rats faster by giving them supplements of the two vitamin-like substances lipoic acid and carnitine.

Both substances are important intermediates for energy production in the mitochondria. With age they bind poorly to the enzymes which cause the mitochondria to function poorly. But this poor binding can also be overcome with supplements. As well as making the rats faster it was possible to measure that their mitochondria once again functioned normally. Clinically such treatment has been able to result in improvement in people with mild Alzheimer’s.

The unique thing about Ames is that his arguments are based on biochemistry. This means that he refers to elementary chemical reactions which are demonstrable in the organism. Many others base their views of more or less uncertain clinical trails, sometimes without knowledge of the biochemistry behind them. It might not be coincidental that The Nobel Prise in medicine typically is given to a biochemist.

By: Vitality Council

References:
1. Bruce N Ames. Increasing longevity by tuning up metabolism. EMBO reports 2005;6:S20- S23.
2. Memory loss in old rats is associated with brain mitochondrial decay and RNA/DNA oxidation: Partial reversal by feeding acetyl-L-carnitine and/or R-a-lipoic acid. J. Liu et al. Proc Natl Acad Sci USA.2002;99:2356-61.
3. B N Ames et al. High-dose vitamins stimulate variant enzymes with decreased coenzyme-binding affinity (increased Km): Relevance to genetic diseases and polymorphisms. Am J Clin Nutr 2002;75:616-58.

Vitamin D Prevents Cancer

December 30, 2005

A new and much discussed analysis, has shown that nearly every other cancer case can be prevented by D vitamin, if everyone is getting the suffient dosage, which almost no one is.

It has now been proven that the frequency of cancer can be reduced dramatically by increasing the population’s vitamin D intake.

This is the claim of the American researcher Cedric Garland, who is a professor of epidemiology at the University of Southern California, San Diego. He is behind the largest analysis of vitamin D research and cancer to date. 63 studies from 1962-2004 were analysed.

As a whole they strongly indicate that if the population’s intake of vitamin D is set up to 1,000 units per day, the frequency of colon cancer would be halved while the number of breast cancers and ovarian cancers would be reduced by a third. The 1,000 units of vitamin D (25 micrograms) would be, with certainty, without side effects. This is the same as five times the normally recommended dose, which only few receive.

Garland, who has studied vitamin D for 25 years, is very certain of his results. In a statement given to the BBC and The Independent he declared that there is now such an overwhelming amount of indications from the best observational studies, that governmental action is warranted.

It is worth noticing that these internationally respected media concerns both came with detailed reports, which also were followed by a leading editorial in The Independent. The study itself was published in the February 2006 issue of the American Journal of Public Health. The results were also published beforehand online in an extensive statement on the university’s (UCSD) official homepage.

Garlands interest for vitamin D was awakened when he noticed in the 1980’s that the risk of colon cancer and breast cancer in the northern United States was double that of the risk in the Southern states. He and others started a 12 year study, which lead to a hypothesis that the reason behind this phenomenon is sunlight’s ability to create vitamin D in the skin. This theory has subsequently been tested in many ways. It also fits with the increased cancer frequency in cities, when air pollution containing sulphur dioxide blocks the vitamin D producing short ultraviolet solar radiation.

This also fits with the diet and cancer studies on workers in Chicago and with the low frequency of breast cancer in Japan, where though there is little sunlight, the diet is largely fish based. Fatty fish are just about the only regular source of vitamin D outside of the summer months in Japan, Chicago, and Northern Europe. Additionally, the theory fits well with the fact that the many people, who for genetic reasons utilize vitamin D poorly, are strongly overrepresented among those who suffer cancers of the colon, breast, prostate, and more.

More and more indications
The faithful subscribers to this newsletter may remember our accounts of the studies of the last year which have shown that women with low vitamin D status have much more frequently lumps in their breasts than others. This is a relationship which fits with a higher risk of cancer.

They may also remember that an American (as well as a large Norwegian) study showed that the possibility of beating many cancer forms is best when the cancer is found during the summer, when vitamin D status is highest.

This indicates that the vitamin not only prevents cancer, but also inhibits cancer growth. Concordantly with Garland’s claim, African Americans have a lower chance of recovery form breast cancer than Anglo Saxon individuals. This may be due to a reduced vitamin D status brought on by the reduced ability to absorb vitamin D which comes with dark skin colour.

These results and others are strengthen by animal studies where it has been proven that vitamin D promotes cell death in abnormal cells in the process called apoptosis and has a general dampening effect on cell growth. This last principle is utilized by psoriasis salves, which contain a vitamin D – like substance which inhibits the overwhelming growth and lack of cell maturation which characterises this skin disease.

The optimal daily vitamin D dose, especially during the winter months between October and May, is according to Garland about 1,000 units (or 25 micrograms) per day. This recommendation is based on a study from October 2005. The 1,000 units lead to a concentration of the vitamin D precursor 25-OH-vitamin D of about 80 nmol/l (nanomol per litre), which Garland found to lead to the lowest risk of colon cancer.

Much also indicates that Garland is correct that vitamin D supplements could save thousands of lives. If this is the case, than any media claim that we get superfluous vitamins is contrary to public health.

By: Vitality Council

References:
1. Garland CF et al. The Role of Vitamin D in Cancer Prevention. Am J Public Health. 2006;96(2):9-18. 2005 Dec 27; [Epub ahead of print].
2. Gorham ED et al. Vitamin D and prevention of colorectal cancer. J Steroid Biochem Mol Biol. 2005 Oct;97(1-2):179-94. Epub 2005 Oct 19.
3. Garland CF et al. Serum 25-hydroxyvitamin D and colon cancer: eight-year prospective study. Lancet. 1989 Nov 18;2(8673):1176-8.
4. Jeremy Laurance, Health Editor. Revealed: the pill that prevents cancer. The Independent 28.12.05.

Vitamin E May Be Diabetic’s Saviour

December 20, 2005

About one out of every two diabetics has a five times larger than average risk of dying from heart disease. This risk can be cut in half by vitamin E. This is a well justified theory which is now being tested in a large Israeli study.

It is well known that the heart’s of diabetics become easily atherosclerotic, often causing them to die due to blood clots in the heart. Therefore, health officials work hard to combat atherosclerosis in diabetics. For example, diabetics are encouraged to take cholesterol reducing medicine, even when their cholesterol levels are very low. Diabetics’ blood pressure should also be low.

If one believes the Israeli researcher, Andrew Levy, the lives of even more diabetics can be saved by taking 400 units of vitamin E daily. Levy’s theory is now being tested in Israel in a large randomised study with 5,000 middle aged diabetics. Half of them will receive vitamin E for the next four years while the other half will not. If it goes as is hoped, the result will have enormous significance for public health.

It is optimistic to implement such an expensive study with vitamin E. As every (Danish, ed.) TV watcher knows, vitamin E doesn’t work against anything. Why would Levy and his co-workers from the Israeli Technion Technical Institute, where many Nobel prise winners can be found, go against the flow?

The explanation involves an antioxidant which few non-experts know of. It is called haptoglobin and is a protein which is created in the body. Haptoglobin binds the blood’s colouring agent, the iron rich haemoglobin, if it becomes detached from the red blood cells. In this way it prevents iron poisoning and therefore against overloading of free radicals in a long list of conditions where red blood cells die.

Disregarded effects of vitamin E
Levy and his co-workers have shown time and time again that haptoglobin works as an antioxidant. There is more to the story; haptoglobin is found in two forms, which are not equally effective antioxidants. Type 1 haptoglobin works much better than type 2. If one has type 2 haptoglobin (like 40% of the Israeli diabetics) the risk of death due to heart disease is five times higher than normal! In other words, a very large part of diabetics’ high death rate due to heart disease is because one out of every two of them has an insufficiency defence against oxidation because of ineffective haptoglobin.

The logical consequence of this enormous difference is, according to Levy, that the poorly protected diabetics with type 2 haptoglobin should take supplementary antioxidants. This is where the vitamin E study comes in. Vitamin E should be able to help. On the other hand, if it does help, why have other studies with vitamin E not previously shown this effect?

Levy believes that this is presumably because they have not been analysed with this effect in mind. He studied serum from a large sample of the ca. 10,000 participants in the Canadian HOPE study, where atherosclerotic participants received 400 units of vitamin E daily. The people behind the HOPE study found no effect of the vitamin E. But what about the 1,000 diabetics in the study? About a year ago, Levy proved that vitamin E reduced the risk of heart disease by 50% in the diabetic participants who had type 2 haptoglobin.
This surprising result was hidden in the HOPE study and was apparently unknown. This is quite educational. If the most threatened diabetics’ very high risk of heart disease can be halved with a cheap, harmless, vitamin E pill, the signification is very large.

Until 2010 we only have these results. There are no other results to turn to. It is not even possible to find out which kind of haptoglobin you have. If you wish to prevent heart disease, you have to do it in the dark. It is however risk free.

By: Vitality Council

References:
1. Andrew P. Levy et al. The Effect of Vitamin E Supplementation on Cardiovascular Risk in Diabetic Individuals With Different Haptoglobin Phenotypes. Diabetes Care 27:2767, 2004.
2. Levy AP et al. Strong Heart Study. Haptoglobin phenotype is an independent risk factor for cardiovascular disease in individuals with diabetes: The Strong Heart Study. J Am Coll Cardiol. 2002 Dec 4;40(11):1984-90.
3. Suleiman M, et al. Haptoglobin polymorphism predicts 30-day mortality and heart failure in patients with diabetes and acute myocardial infarction. Diabetes. 2005 Sep;54(9):2802-6.
4. A survey of the study can be found at Clinical Trials.gov: www.clinicaltrials.gov/ct/gui/show/NCT00220831.

care.diabetesjournals.org
www.cardiosource.com/jacc/index.asp
www.clinicaltrials.gov/ct/gui/show/NCT00220831
www.iom.dk

Vitamin E Lowers Cholesterol Levels in Diabetics

December 13, 2005

There are at least eight different kinds of Vitamin E, but typically we only get one of those in vitamin pills. One of the other kinds prevents arteriosclerosis, while a third kind has been shown to effectively lower the blood cholesterol levels of diabetics.

When you buy vitamin E in pill form, you almost always get alpha-tocopherol. Alpha-tocopherol (natural and sometimes, unfortunately, synthetic) has also been used exclusively in almost all of the studies on vitamin E’s effectiveness against cardiovascular disease.

There are other tocopherols than alpha-tocopherol. They all share the same basic chemical structure but differ in their side chains. Tocopherol can come in alpha, beta, gamma, or delta forms depending on the position of its side chains. Apha-tocopherol, the type used in vitamin pills, has the greatest effect as a vitamin.

Tocotrienols, another vitamin E form, are less well known. They differ from the other forms by having three double binds in their side chain. They are found in palm oil as well as grains such as oats, barley, rice, and corn. Tocotrienols can also be found in alpha, beta, gamma, and delta forms.

These tocotrienols are coming into the spotlight. For many years, on the basis of animal studies and small studies using humans, there has been the suspicion that they are effective against atherosclerosis. For example, ten year ago an American randomised study with 50 test subjects showed that tocotrienols from palm oil definitely counteracted atherosclerosis of the carotid arteries. Unfortunately no follow up study has been preformed.

Recently an Indian randomised study has surfaced. It shows that tocotrienols from rice sources sink the cholesterol concentration in the blood of type 2 diabetics (old age diabetes). In this study 19 diabetics received placebos for a period of 60 days. Before or after this 60 period they received, for a similar period, capsules containing rice with high concentrations of tocotrienols (each participant received 3 mg tocotrienol per kilo bodyweight per day). The study was designed so that no one knew which participants received which pill at what time until the study was completed.

Unsolved problems
The results showed that the tocotrienols reduced the total cholesterol levels of the participant’s blood by no less than 30%. Even more encouraging, the “bad” cholesterol, (LDL cholesterol) which can become oxidised and cause atherosclerosis, fell by an astonishing 42%. This effect is just as pronounced as seen with traditional cholesterol lowering medication, the so called statins.

It seems that anyone who can get a hold of tocotrienols is free from seeking traditional cholesterol lowering treatment. But before this is certain and becomes common practice, a few things should be further looked analysed.

First and foremost, can the results of the aforementioned study be reproduced? As stated earlier tocotrienols were effective against atherosclerosis in the carotid arteries, but in the study which showed this effect, the participants’ total cholesterol was unchanged! Tocotrienol does not always lower cholesterol. But does it always counteract atherosclerosis? At best the answer is maybe, we don’t know. After looking at the results of the two studies we can hypothesise that the differences in their results could be the result of the different tocotrienol blends used. The first study used a palm oil extract while the second used a rice source. The differences between alpha, beta, gamma, and delta tocotrienol is sufficient, their effects should differ.

Other things which we understand even less could also play a role. The likely cholesterol lowering effect of the rice tocotrienol should also be tested for possible side effects and the results of this should be compared with the side effects of traditional cholesterol medicine. A big job awaits researchers.

Meanwhile, the studies have shown with certainty that (apart from that oatmeal and brown rice are healthy) we are not finished with vitamin E or, more to the point, the E vitamins. There are many of them, and they have different effects. Their potential is very promising.

By: Vitality Council

References:
1. Tomeo AC, Geller M, Watkins TR, Gapor A, Bierenbaum ML. Antioxidant effects of tocotrienols in patients with hyperlipidemia and carotid stenosis. Lipids. 1995 Dec;30(12):1179-83.
2. Qureshi AA, Salser WA, Parmar R, Emeson EE. Novel tocotrienols of rice bran inhibit atherosclerotic lesions in C57BL/6 ApoE-deficient mice. J Nutr. 2001 Oct;131(10):2606-18.
3. Baliarsingh S, Beg ZH, Ahmad J. The therapeutic impacts of tocotrienols in type 2 diabetic patients with hyperlipidemia. Atherosclerosis. 2005 Oct;182(2):367-74. Epub 2005 Apr 20.

www.aocs.org/press
www.nutrition.org
www.athero.org
www.iom.dk

False Propaganda Against Vitamins

November 30, 2005

A frightening warning in an article in the Danish newspaper, Ekstra Bladet, claims that people will get sick from taking Vitamin B and injure their hearts by consuming Vitamin E. These claims are twisted and false.

Condescending evaluations of vitamin supplements are quite common. They rarely come from experts, but often from people who know something about something else and therefore think they know something about everything.

By: Niels Hertz  MD

References:
1. A. Astrup. Du bliver syg af kosttilskud. Sund og Slank. Ekstra Bladet. 26.11.05.
2. The HOPE and HOPE-TOO Trial Investigators. Effects of long-term vitamin E supplementation on cardiovascular events and cancer. JAMA 2005;293:1338-47.
3. Bonaa KH. NORVIT: Randomized trial of homocysteine-lowering with B-vitamins for secondary prevention of cardiovascular disease after acute myocardial infarction. Program and Abstracts from the European Society of Cardiology Congress 2005; September 3-7, 2005; Stockholm, Sweden. Hot Line II. Iflg. Linda Brooks. NORVIT: The norwegian vitamin trial. Medscape Sept. 2005. (Ikke publiceret i trykt medie).